
Code Security Assessment

Stellaswap #2
Mar 16th, 2022

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
A20-01 : Unlocked Compiler Version

A20-02 : SafeMath Not Used

A20-03 : Variables That Could Be Declared as `constant`

AMM-01 : Centralization Risk in AMM

GSB-01 : Centralization Risk in GasSwap.sol

GSB-02 : Potential Reentrancy Attack

SDB-01 : Inappropriate Upper Limits for Fees

SDB-02 : Centralization Risk in StellaDistributor.sol

SSE-01 : Missing Error Messages

SSP-01 : Unknown Implementation of `migrator.desiredLiquidity()`

STE-01 : Initial Token Distribution

SVB-01 : Function emergencyWithdraw() allows user to bypass the lockdown duration check

SVB-02 : Missing Emit Events

SVB-03 : Centralization Risk in StellaVault.sol

Appendix

Disclaimer

About

Stellaswap #2 Code Security AssessmentStellaswap #2 Code Security Assessment

Summary
This report has been prepared for Stellaswap to discover issues and vulnerabilities in the source code of

the Stellaswap #2 project as well as any contract dependencies that were not part of an officially

recognized library. A comprehensive examination has been performed, utilizing Static Analysis and Manual

Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices.
We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

Stellaswap #2 Code Security Assessment

Overview

Project Summary

Project Name Stellaswap #2

Platform Other

Language Solidity

Codebase https://github.com/stellaswap/core/commit/a20e85bc0bacbad189fc4fd8669e4c870f24e5cd

Commit cfdfb469121c8cf1465362624bf35317cbd7f34

Audit Summary

Delivery Date Mar 16, 2022 UTC

Audit Methodology Static Analysis, Manual Review

Vulnerability Summary

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Mitigated Resolved

Critical 1 0 0 0 0 0 1

Major 6 0 0 4 0 2 0

Medium 1 0 0 0 0 0 1

Minor 1 0 0 0 0 0 1

Informational 5 0 0 5 0 0 0

Discussion 0 0 0 0 0 0 0

Stellaswap #2 Code Security Assessment

https://github.com/stellaswap/core/commit/a20e85bc0bacbad189fc4fd8669e4c870f24e5cd

Audit Scope

ID File SHA256 Checksum

MAT amm/libraries/Math.sol a553dd23aa798c18e1b2a19b2f64a2ba8144df56e212f20bab346be5c37287bb

SMB amm/libraries/SafeMath.sol 7564e2cd86bfd4342b4b9ce0e734196fa15642876bc1a3515c519e955dae19ec

SSV amm/libraries/StellaSwapV2Library.sol 05c0e1c775dd982e911fb117817f47a0e1c0a30df20d7bfadf6bfd16e73942e4

THB amm/libraries/TransferHelper.sol 28b7bb5e8ac8fb0a3ccdaf50b85d2dbc22804d5b64d08f13924e94206ef823e1

UQB amm/libraries/UQ112x112.sol 24283a562d299a5e4133d3f05304eec8e75a1b18c6907dd2a8f399eea0b16524

SSE amm/StellaSwapV2ERC20.sol b55ffba733a091220cedd0ee895de6226bb31d820fa74227829d13e898f2011a

SSF amm/StellaSwapV2Factory.sol 2730ed9f7adac7fb204972dc18e88babda05b9dd2eca494589290d46835a986e

SSP amm/StellaSwapV2Pair.sol 147410092df2de991d512a43826c189f8e7764d99c76b0069305714dd51ce512

SSR amm/StellaSwapV2Router.sol 3c47554385d5376cdbdd2eedf5beb83172f5930263176ef474c56396b00c10a5

SVR amm/StellaSwapV2Router02.sol 69dd906f7f6111b3f571cb46d62c17a73bd446ec038e0471b9fdf450ed56001a

SDB farms/StellaDistributor.sol 0e9370ef0d6e0e36899b063028201009c1a646012518b9c201350e85b6a5a0ba

FOW forwarder/Forwarder.sol 4af0b1f8414ddde7ef9f9e4b3c604352daed1d0496be85a96faa22f6f434c87c

IFB forwarder/IForwarder.sol 3294fe5789375da2ddb8a5583db8a551e560188ed9e9a447c2e4f597b817440b

EIP gasless/EIP712Base.sol aeed0cc740df31f9a4924ce7317c21ca339c7e1af665de2cd569116011628bfa

EIM gasless/EIP712MetaTransaction.sol 7829192129de9feb36941fc48caada22c4d0a91b95fc2bff1bbdc1e125164895

GSB gasless/GasSwap.sol b5970f3cbf5f30e91a02dc3a78701770180ac86ae8a77193716073545fad139d

ISR gasless/IStellaRouter.sol d4e40dde6a711cd62fb39f0bda2db151e777472af888df101121a3590ed427e0

ITB gasless/IToken.sol 4fa3559518641fcb37deecafd6cc3905a249174d684cf874f7161654fb2cdee2

MRB gasless/MockRouter.sol bffeae13ffc87f4134f00ebd28f774a3fa869f001e913a50c2f2468c3cefec2b

MUL helpers/Multicall.sol b2b0206d463529d8604c2da268b467f4c3672f6a0c1403a4caf25d0f3fa2a7c3

TIM helpers/Timelock.sol 6a8d0738bf841b96de3ae4e14ad616aa1b212d54c009dbf417997b8b36a4cacd

STE token/Stella.sol 0bc750d932845f72496b7f6439a16012d1bc7fa9346f4bbf282b9edb1222867b

Stellaswap #2 Code Security Assessment

ID File SHA256 Checksum

ISE utils/IStellaERC20.sol fc18f0df2b25b3027695ea417661fa9456fa5894f1a1aa03268cee6f2cf786ab

MER utils/MockERC20.sol 7deae230cb15359254bff662a33df1f170942a9b07ef2b61c29cce3bf57426cf

SVB vault/StellaVault.sol 67d228ec3ae99eafc3c214524e836a7876d67fb466bf32e74c5cda6c47231a6b

Stellaswap #2 Code Security Assessment

Findings

ID Title Category Severity Status

A20-01 Unlocked Compiler Version
Language

Specific
Informational Acknowledged

A20-02 SafeMath Not Used
Mathematical

Operations
Informational Acknowledged

A20-03 Variables That Could Be Declared as constant Gas Optimization Informational Acknowledged

AMM-01 Centralization Risk in AMM
Centralization /

Privilege
Major Acknowledged

GSB-01 Centralization Risk in GasSwap.sol
Centralization /

Privilege
Major Acknowledged

GSB-02 Potential Reentrancy Attack Logical Issue Minor Resolved

SDB-01 Inappropriate Upper Limits for Fees Logical Issue Medium Resolved

SDB-02 Centralization Risk in StellaDistributor.sol
Centralization /

Privilege
Major Mitigated

SSE-01 Missing Error Messages Coding Style Informational Acknowledged

SSP-01
Unknown Implementation of

migrator.desiredLiquidity()

Centralization /

Privilege
Major Acknowledged

STE-01 Initial Token Distribution
Centralization /

Privilege
Major Mitigated

Stellaswap #2 Code Security Assessment

14
Total Issues

Critical 1 (7.14%)

Major 6 (42.86%)

Medium 1 (7.14%)

Minor 1 (7.14%)

Informational 5 (35.71%)

Discussion 0 (0.00%)

ID Title Category Severity Status

SVB-01
Function emergencyWithdraw() allows user to

bypass the lockdown duration check
Logical Issue Critical Resolved

SVB-02 Missing Emit Events Coding Style Informational Acknowledged

SVB-03 Centralization Risk in StellaVault.sol
Centralization /

Privilege
Major Acknowledged

Stellaswap #2 Code Security Assessment

A20-01 | Unlocked Compiler Version

Category Severity Location Status

Language Specific Informational
token/Stella.sol: 2

vault/StellaVault.sol: 2

forwarder/Forwarder.sol: 2

Acknowledged

Description

The contract has unlocked compiler version. An unlocked compiler version in the source code of the

contract permits the user to compile it at or above a particular version. This, in turn, leads to differences in

the generated bytecode between compilations due to different compiler versions. This can lead to an

ambiguity when debugging as compiler specific bugs may occur in the codebase that would be hard to

identify over a span of multiple compiler versions rather than a specific one.

Recommendation

We advise that the compiler version is instead locked at the lowest version possible that the contract can

be compiled at. For example, for version v0.8.0 the contract should contain the following line:

pragmapragma soliditysolidity 0.80.8.0.0;;

Stellaswap #2 Code Security Assessment

A20-02 | SafeMath Not Used

Category Severity Location Status

Mathematical Operations Informational
farms/StellaDistributor.sol: 421~424

vault/StellaVault.sol: 433~436
Acknowledged

Description

SafeMath from OpenZeppelin is not used in the following lines which makes them possible for underflow

and will lead to an inaccurate calculation result.

421421 pool pool..accStellaPerShare accStellaPerShare ==

422422 pool pool..accStellaPerShare accStellaPerShare ++

423423 ((((((stellaReward stellaReward ** 1e121e12)) // pool pool..totalLptotalLp)) ** lpPercent lpPercent)) //

424424 10001000;;

Recommendation

We advise the client to use OpenZeppelin's SafeMath library for all of the mathematical operations.

Reference:
https://github.com/OpenZeppelin/openzeppelin-

contracts/blob/master/contracts/utils/math/SafeMath.sol

Stellaswap #2 Code Security Assessment

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeMath.sol

A20-03 | Variables That Could Be Declared As constant

Category Severity Location Status

Gas Optimization Informational
token/Stella.sol: 13, 14

gasless/GasSwap.sol: 11
Acknowledged

Description

The linked variables could be declared as constant since these state variables are never modified.

Recommendation

We recommend to declare these variables as constant .

Stellaswap #2 Code Security Assessment

AMM-01 | Centralization Risk In AMM

Category Severity Location Status

Centralization /

Privilege
Major

amm/StellaSwapV2Factory.sol: 48~51, 53~56, 58~61, 63~67,

69~72

amm/StellaSwapV2Pair.sol: 133~161, 75~93

Acknowledged

Description

In the contract StellaSwapV2Factory the role feeToSetter has authority over the functions shown in the

diagram below.

Any compromise to the feeToSetter account may allow the hacker to take advantage of this authority and

set the swap fee to 100% or set the Migrator address to a malicious contract, causing loss or stolen of

uses' asset.

Stellaswap #2 Code Security Assessment

Authenticated Role

Function

State Variables

Function

State Variables

Function State Variables

Function State Variables

Function Calls

Function State Variables

Function Calls

feeToSetter

setFeeTo

setMigrator

setFeeToSetter

setDevFee

setSwapFee

msg
feeToSetter
feeTo

msg
feeToSetter
migrator

msg
feeToSetter

msg
feeToSetter

setDevFee_1
StellaSwapV2Pair_1

msg
feeToSetter

setSwapFee_1
StellaSwapV2Pair_1

Stellaswap #2 Code Security Assessment

In the contract StellaSwapV2Pair the role migrator has authority over the functions shown in the

diagram below.

Any compromise to the migrator account may allow the hacker to take advantage of this authority and

disrupt the initial liquidity offering, which might damage the project tokenomics.

Stellaswap #2 Code Security Assessment

Authenticated Role Function

State Variables

Function Calls

migrator mint

this
token0
token1
totalSupply
factory
msg
liquidity
MINIMUM_LIQUIDITY
Math
kLast
reserve1
reserve0

getReserves_0
balanceOf_1
IERC20StellaSwap_1
sub_1
_mintFee_2
migrator_0
IStellaSwapV2Factory_1
desiredLiquidity_0
IMigrator_1
mul_1
sqrt_1
_mint_2
min_2
_update_4

Stellaswap #2 Code Security Assessment

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Stellaswap #2 Code Security Assessment

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

StellaSwap Team:

feeToSetter moved behind Timelock:

https://moonbeam.moonscan.io/tx/0xdd04ef68aafd9719b9121ea29a55232255433b29ccfd2bb9e14e895c

16b5b9ed

Stellaswap #2 Code Security Assessment

https://moonbeam.moonscan.io/tx/0xdd04ef68aafd9719b9121ea29a55232255433b29ccfd2bb9e14e895c16b5b9ed

GSB-01 | Centralization Risk In GasSwap.sol

Category Severity Location Status

Centralization /

Privilege
Major

gasless/GasSwap.sol: 32~38, 40~43, 45~47, 49~52, 54~56,

59~61
Acknowledged

Description

In the contract GasSwap the role _owner has authority over the functions shown in the diagram below.

Any compromise to the _owner account may allow the hacker to take advantage of this authority and

modify critical settings in the GasSwap contract.

Authenticated Role

Function

State Variables

Function Calls

Function State Variables

Function State Variables

Function State Variables

Function Calls

_owner

whitelistToken

changeFeePercent

changeFeeAddress

changeRouter

Address
tokenWhitelist

isContract_1

feePercent

feeAddress

Address
stellaRouter

isContract_1
IStellaRouter_1

Stellaswap #2 Code Security Assessment

Function State Variables

Function Calls

Function State Variables

Function Calls

withdrawToken

withdrawETH

msg

transfer_2

msg

transfer_1
payable_1

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

Stellaswap #2 Code Security Assessment

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

StellaSwap Team:

We currently haven't deployed GasSwap contract and are planning not to.

The reason for this contract was to create "SwapForGas" feature where people that bridged into network

can get gas.

We've partnered with Biconomy to provide gas-less transactions and will be using them:

https://stellaswap.medium.com/stellaswap-partners-with-biconomy-for-gasless-transactions-on-

moonbeam-2da760a5f6b5

Stellaswap #2 Code Security Assessment

https://stellaswap.medium.com/stellaswap-partners-with-biconomy-for-gasless-transactions-on-moonbeam-2da760a5f6b5

GSB-02 | Potential Reentrancy Attack

Category Severity Location Status

Logical Issue Minor gasless/GasSwap.sol: 64~129 Resolved

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another

untrusted contract before resolving any effects.

If the attacker can control the untrusted contract, they can make a recursive call back to the original

function, repeating interactions that would have otherwise not run after the external call resolved the

effects.

11 payable(msgSender()).transfer(amount); payable(msgSender()).transfer(amount);

If the GLMR receiver is a contract, he can perform recursive callbacks in his receive() function.
Such

unexpected recursive callbacks may disrupt the operation of the GasSwap contract in some cases.

Recommendation

We recommend applying OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the

aforementioned functions to prevent reentrancy attack.

Alleviation

The team heeded our advice and updated the code in commit

5cfdfb469121c8cf1465362624bf35317cbd7f34

Stellaswap #2 Code Security Assessment

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol
https://github.com/stellaswap/core/commit/5cfdfb469121c8cf1465362624bf35317cbd7f34

SDB-01 | Inappropriate Upper Limits For Fees

Category Severity Location Status

Logical Issue Medium farms/StellaDistributor.sol: 163~178 Resolved

Description

The current upper limit for fee percent can be set as high as 100%, which is not a reasonable value.

11 functionfunction setTeamPercentsetTeamPercent((uint256uint256 _newTeamPercent _newTeamPercent)) publicpublic onlyOwner onlyOwner {{

22 requirerequire((

33 00 <=<= _newTeamPercent _newTeamPercent &&&& _newTeamPercent _newTeamPercent <=<= 10001000,,

44 "set team percent: invalid percent value""set team percent: invalid percent value"

55));;

66 requirerequire((

77 treasuryPercent treasuryPercent ++ _newTeamPercent _newTeamPercent ++ investorPercent investorPercent <=<= 10001000,,

88 "set team percent: total percent over max""set team percent: total percent over max"

99));;

1010 emitemit SetTeamPercentSetTeamPercent((teamPercentteamPercent,, _newTeamPercent _newTeamPercent));;

1111 teamPercent teamPercent == _newTeamPercent _newTeamPercent;;

1212 }}

Recommendation

We recommend adding a upper limit for total fee and set it to an appropriate value such as 10%.

Alleviation

The team heeded our advice and updated the code in commit

a54b5a67007eb041bb8b445c698af1e8c0f5f439.

Stellaswap #2 Code Security Assessment

https://github.com/stellaswap/core/commit/a54b5a67007eb041bb8b445c698af1e8c0f5f439

SDB-02 | Centralization Risk In StellaDistributor.sol

Category Severity Location Status

Centralization

/ Privilege
Major

farms/StellaDistributor.sol: 251~258, 575~580, 582~601, 604~609, 612~617

, 261~271, 279~312, 315~339, 636~647, 656~667, 679~690, 670~677, 627

~634, 650~654

Mitigated

Description

In the contract StellaDistributor the role _operator has authority over the functions shown in the

diagram below.

Any compromise to the _operator account may allow the hacker to take advantage of this authority and

disrupt the operation of the Distributor contract.

Stellaswap #2 Code Security Assessment

Authenticated Role

Function

State Variables

Function

State Variables

Function Calls

Function

State Variables

Function Calls

Function State Variables

Function Calls

Function State Variables

Function Calls

_operator

transferOperator

updateEmissionRate

updateAllocPoint

enableMetaTxns

disableMetaTxns

_operator

msg
stellaPerBlock

massUpdatePools_0

poolInfo
totalAllocPoint

massUpdatePools_0
_msgSender_0
add_1
sub_1

metaTxnsEnabled

_msgSender_0

metaTxnsEnabled

_msgSender_0

Stellaswap #2 Code Security Assessment

In the contract StellaDistributor the role _owner has authority over the functions shown in the diagram

below.

Any compromise to the _owner account may allow the hacker to take advantage of this authority and

disrupt the contract operation. e.g. Adding a new pool with extremely high allocpoints, setting the fees to

100%, or setting the reward lock time to as long as 90 days.

Authenticated Role

Function

State Variables

Function

State Variables

Function Calls

Function

State Variables

Function Calls

Function State Variables

Function
State Variables

_owner

startFarming

add

set

setTeamPercent

setTreasuryPercent

block
startBlock
poolInfo

MAXIMUM_DEPOSIT_FEE_RATE
MAXIMUM_HARVEST_INTERVAL
block
startBlock
totalAllocPoint
poolInfo

massUpdatePools_0
add_1
PoolInfo_0
push_1

MAXIMUM_DEPOSIT_FEE_RATE
MAXIMUM_HARVEST_INTERVAL
totalAllocPoint
poolInfo

massUpdatePools_0
add_1
sub_1

treasuryPercent
investorPercent
teamPercent

Stellaswap #2 Code Security Assessment

Function
State Variables

setTreasuryPercent

setInvestorPercent

teamPercent
investorPercent
treasuryPercent

teamPercent
treasuryPercent
investorPercent

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

Stellaswap #2 Code Security Assessment

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

StellaSwap Team:

StellaDistributor is now behind Timelock, moved ownership and Operator:

Ownership Transferred:

https://moonbeam.moonscan.io/tx/0x53becc98f9efe1916df38b9dde1a004b10239612e5091d74c79eb14b

9b67dd8e

Operatorship Transferred:

https://moonbeam.moonscan.io/tx/0x5c8e5be56f29ab6248106694719e26e63412b63e72d58b64fb527998

f857df8e

Stellaswap #2 Code Security Assessment

https://moonbeam.moonscan.io/tx/0x53becc98f9efe1916df38b9dde1a004b10239612e5091d74c79eb14b9b67dd8e
https://moonbeam.moonscan.io/tx/0x5c8e5be56f29ab6248106694719e26e63412b63e72d58b64fb527998f857df8e

SSE-01 | Missing Error Messages

Category Severity Location Status

Coding Style Informational amm/StellaSwapV2ERC20.sol: 76 Acknowledged

Description

The function call will revert when there is an inadequate allowance. It is better to provide a string message

containing details about the error that will be passed back to the caller.

11 functionfunction transferFromtransferFrom((addressaddress fromfrom,, addressaddress to to,, uintuint value value)) externalexternal returnsreturns ((boolbool))
{{

22 ifif ((allowanceallowance[[fromfrom]][[msgmsg..sendersender]] !=!= uintuint((--11)))) {{

33 allowance allowance[[fromfrom]][[msgmsg..sendersender]] == allowance allowance[[fromfrom]][[msgmsg..sendersender]]..subsub((valuevalue));;
44 }}

55 _transfer_transfer((fromfrom,, to to,, value value));;

66 returnreturn truetrue;;

77 }}

Recommendation

We recommend providing reasonable error message for the linked code.

Stellaswap #2 Code Security Assessment

SSP-01 | Unknown Implementation Of migrator.desiredLiquidity()

Category Severity Location Status

Centralization / Privilege Major amm/StellaSwapV2Pair.sol: 145 Acknowledged

Description

setMigrator() function in StellaSwapV2Factory can set migrator contract to any address that is

implemented from IMigrator interface by the owner. As result, invocation of

migrator.desiredLiquidity() in function mint() may bring dangerous effects as it is unknown to the user.

The scope of the audit treats Migratorcontract as black boxes and assumes their functional correctness.

However, in the real world, Migrator can be compromised and the contract controller can set arbitrary

amounts of desiredLiquidity , which may lead to lost or stolen assets.

Recommendation

Migrator contract is out of the audit scope. We encourage the team to constantly monitor the statuses of

the Migrator contract and ensure its security and functionality correctness.

Alleviation

[StellaSwap Team]:

This function was inherited from fork of SushiSwap's AMM. This method allows users to migrate their LP

on other DEX. This function is only triggered when the Pair is new and no liquidity has been locked.

After moving Factory to Timelock, we will constantly monitor state of contract using Openzepplin's

Defender Sentinel.

This should not affect initiliazed liquidity pairs.

Stellaswap #2 Code Security Assessment

STE-01 | Initial Token Distribution

Category Severity Location Status

Centralization / Privilege Major token/Stella.sol: 20 Mitigated

Description

All of the Stella tokens are sent to the contract deployer when deploying the contract. This could be a

centralization risk as the deployer can distribute Stella tokens without obtaining the consensus of the

community.

Recommendation

We recommend the team be transparent regarding the initial token distribution process, and the team shall

make enough efforts to restrict the access of the private key.

Alleviation

StellaSwap Team:

100k tokens were initial minting for liquidity lock. The rest tokens has been moved to locker:

0x8995066b7F1FB3Abe3c88040b677d03d607A0b58

The purpose of these tokens are Protocol Controlled Value (Treasury) and are meant to be used for VC

fund raise, airdrops, advisors vesting, marketing and other stuff that we require tokens for.

Stellaswap #2 Code Security Assessment

SVB-01 | Function EmergencyWithdraw() Allows User To Bypass The

Lockdown Duration Check

Category Severity Location Status

Logical Issue Critical vault/StellaVault.sol: 515~537 Resolved

Description

The emergencyWithdraw function is not disabled in the vault contract, which allows users to bypass the

lockdown duration check in this contract. Users can withdraw their funds at any time with the

emergencyWithdraw function.

This implementation conflicts with the official document:

Users can stake their STELLA in Booster Vaults, which are single-asset STELLA-only pools. STELLA

holders can lock their tokens into Booster vaults to generate higher APYs, with a longer time duration

equating to a greater yield rate. These vaults are time-locked, meaning that users can lock their STELLA

across a range of time horizons (e.g. 1w, 1m or 1y). Once locked, the tokens cannot be withdrawn until the

timelock finishes.

Recommendation

We recommend the removing function emergencyWithdraw from the codebase.

Alleviation

Function emergencyWithdraw() was removed from code base in commit

491766576f843d0120050311e7b6b8943d539558

Stellaswap #2 Code Security Assessment

https://github.com/stellaswap/core/commit/491766576f843d0120050311e7b6b8943d539558

SVB-02 | Missing Emit Events

Category Severity Location Status

Coding Style Informational vault/StellaVault.sol: 269~279 Acknowledged

Description

There should always be events emitted in the sensitive functions that are controlled by centralization roles.

Recommendation

It is recommended emitting events for the sensitive functions that are controlled by centralization roles.

Stellaswap #2 Code Security Assessment

SVB-03 | Centralization Risk In StellaVault.sol

Category Severity Location Status

Centralization

/ Privilege
Major

vault/StellaVault.sol: 259~266, 607~612, 614~633, 636~641, 644~649,

269~279, 287~322, 325~351, 668~679, 688~699, 711~722, 702~709,

659~666, 682~686

Acknowledged

Description

In the contract StellaVault the role _operator has authority over the functions shown in the diagram

below.

Any compromise to the _operator account may allow the hacker to take advantage of this authority and

modify critical settings in the Vault contract.

Stellaswap #2 Code Security Assessment

Authenticated Role

Function

State Variables

Function

State Variables

Function Calls

Function

State Variables

Function Calls

Function State Variables

Function Calls

Function State Variables

Function Calls

_operator

transferOperator

updateEmissionRate

updateAllocPoint

enableMetaTxns

disableMetaTxns

_operator

msg
stellaPerBlock

massUpdatePools_0

poolInfo
totalAllocPoint

massUpdatePools_0
_msgSender_0
add_1
sub_1

metaTxnsEnabled

_msgSender_0

metaTxnsEnabled

_msgSender_0

Stellaswap #2 Code Security Assessment

In the contract StellaVault the role _owner has authority over the functions shown in the diagram below.

Any compromise to the _owner account may allow the hacker to take advantage of this authority and

disrupt the contract operation. e.g. Adding a new pool with extremely high allocpoints or setting the fees to

100%.

Authenticated Role

Function

State Variables

Function

State Variables

Function Calls

Function

State Variables

Function Calls

Function State Variables

Function
State Variables

_owner

startFarming

add

set

setTeamPercent

setTreasuryPercent

block
startBlock
poolInfo

MAXIMUM_DEPOSIT_FEE_RATE
MAXIMUM_HARVEST_INTERVAL
block
startBlock
totalAllocPoint
poolInfo

massUpdatePools_0
add_1
PoolInfo_0
push_1

MAXIMUM_DEPOSIT_FEE_RATE
MAXIMUM_HARVEST_INTERVAL
totalAllocPoint
poolInfo

massUpdatePools_0
add_1
sub_1

treasuryPercent
investorPercent
teamPercent

teamPercent

Stellaswap #2 Code Security Assessment

Function
State Variables

setInvestorPercent

investorPercent
treasuryPercent

teamPercent
treasuryPercent
investorPercent

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Stellaswap #2 Code Security Assessment

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

StellaSwap Team:

Operator to Timelock:

https://moonbeam.moonscan.io/tx/0x87324bec78046327fb2ff871256b9f51d0f637841a64702f449a4fbde1

1c215d

Owner to Timelock:

https://moonbeam.moonscan.io/tx/0xc78efbda28f6a60120ec52862966390a7c320c414864eea0fc898239f

905b0d1

Stellaswap #2 Code Security Assessment

https://moonbeam.moonscan.io/tx/0x87324bec78046327fb2ff871256b9f51d0f637841a64702f449a4fbde11c215d
https://moonbeam.moonscan.io/tx/0xc78efbda28f6a60120ec52862966390a7c320c414864eea0fc898239f905b0d1

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation findings relate to mishandling of math formulas, such as overflows, incorrect

operations etc.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or

delete.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

Stellaswap #2 Code Security Assessment

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

Stellaswap #2 Code Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the

Agreement. This report provided in connection with the Services set forth in the Agreement shall be used

by the Company only to the extent permitted under the terms and conditions set forth in the Agreement.

This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes,

nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing

development. You agree that your access and/or use, including but not limited to any services, reports,

and materials, will be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens

are emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives, false negatives, and other unpredictable results. The

services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS,

OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS

Stellaswap #2 Code Security Assessment

AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE

MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL

WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE

SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING,

CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK

MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT,

WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF,

WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE

SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION

TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO

REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS,

ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY

PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR

DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY,

RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE

SERVICE. CERTIK WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES,

OR INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND

INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY PERSONAL INJURY OR

PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM CUSTOMER’S ACCESS TO

OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY

OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE

THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY

PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY

PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO,

ANY OTHER PERSON WITHOUT CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR

OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

Stellaswap #2 Code Security Assessment

MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST

CERTIK WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE

SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING

ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH

REPRESENTATIONS AND WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF

CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES OR

ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR

OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS

OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX,

LEGAL, REGULATORY, OR OTHER ADVICE.

Stellaswap #2 Code Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

Stellaswap #2 Code Security Assessment

