Croof

q Bring trust into your projects

Blockchain Security | Smart Contract Audits | KYC

MADE IN GERMANY

StellaSwap

Stable AMM

Audit

Security Assessment
20. April, 2022

For

Disclaimer

Description

Project Engagement

Logo

Contract Link

Methodology

Used Code from other Frameworks/Smart Contracts (direct imports)
Tested Contract Files
Source Lines

Risk Level

Capabilities

Inheritance Graph

CallGraph

Scope of Work/Verify Claims
Modifiers and public functions
Source Units in Scope
Critical issues

High issues

Medium issues

Low issues

Informational issues
Commented Code exist
Audit Comments

SWC Attacks

oo N o o o O W

10
11
13
14
15
21
23
25
25
25
25
27
29
29
30

Disclaimer

SolidProof.io reports are not, nor should be considered, an “endorsement”
or “disapproval” of any particular project or team. These reports are not,
nor should be considered, an indication of the economics or value of any
“product” or “asset” created by any team. SolidProof.io do not cover
testing or auditing the integration with external contract or services (such
as Unicrypt, Uniswap, PancakeSwap etc'..)

SolidProof.io Audits do not provide any warranty or guarantee
regarding the absolute bug- free nature of the technology analyzed,
nor do they provide any indication of the technology proprietors.
SolidProof Audits should not be used in any way to make decisions
around investment or involvement with any particular project. These
reports in no way provide investment advice, nor should be leveraged
as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending to
help our customers increase the quality of their code while reducing the
high level of risk presented by cryptographic tokens and blockchain
technology. Blockchain technology and cryptographic assets present a
high level of ongoing risk. SolidProof’s position is that each company and
individual are responsible for their own due diligence and continuous
security. SolidProof in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

Version Date Description
1.0 19. April 2022 - Layout project
- Automated- /Manual-Security Testing
- Summary
20. Audit 2022 - Check layout of source code
- Finishing report

http://SolidProof.io

Network
Moonbeam (Polkadot)

Website

https://stellaswap.com/

Telegram
https:/t.me/stellaswap

Twitter
https:/twitter.com/StellaSwap

Github

https://github.com/stellaswap

Reddit

https:/Mww.reddit.com/user/stellaswap

Medium
https://stellaswap.medium.com/

https://stellaswap.com/
https://t.me/stellaswap
https://twitter.com/StellaSwap
https://github.com/stellaswap
https://www.reddit.com/user/stellaswap
https://stellaswap.medium.com/

Description
All your DeFi needs in one place.
Swap, earn and build on Moonbeam's leading DEX

Project Engagement

During the 18th of April 2022, StellaSwap Team engaged Solidproof.io to
audit smart contracts that they created. The engagement was technical
in nature and focused on identifying security flaws in the design and
implementation of the contracts. They provided Solidproof.io with access
to their code repository and whitepaper.

Logo

3 StellaSwap

Contract Link

v1.0
Github
https://github.com/stellaswap/stable-amm/
Commit: 9bd2d5deece603d50e1391a7cd4171efa2d2d 43f

https://github.com/stellaswap/stable-amm/

Vulnerability & Risk Level

Risk represents the probability that a certain source-threat will exploit
vulnerability, and the impact of that event on the organization or system.
Risk Level is computed based on CVSS version 3.0.

Medium

4-69

A vulnerability that
can disrupt the
contract functioning
in @ number of
scenarios, or creates a
risk that the contract
may be broken.

A vulnerability that
affects the desired
outcome when using
a contract, or provides
the opportunity to
use a contract in an
unintended way.

A vulnerability that
could affect the
desired outcome of
executing the
contract in a specific
scenario.

A vulnerability that
does not have a
significant impact on
possible scenarios for
the use of the
contract and is
probably subjective.

A vulnerability that
have informational
character but is not
effecting any of the
code.

Immediate action to
reduce risk level.

Implementation of
corrective actions as
soon aspossible.

Implementation of
corrective actionsin a
certain period.

Implementation of
certain corrective
actions or accepting
the risk.

An observation that
does not determine a
level of risk

Auditing Strategy and Techniques
Applied

Throughout the review process, care was taken to evaluate the repository
for security-related issues, code quality, and adherence to specification
and best practices. To do so, reviewed line-by-line by our team of expert
pentesters and smart contract developers, documenting any issues as
there were discovered.

Methodology

The auditing process follows a routine series of steps:
1. Code review that includes the following:

i) Review of the specifications, sources, and instructions provided to SolidProof
to make sure we understand the size, scope, and functionality of the smart
contract.

ii) Manual review of code, which is the process of reading source code line-by-
line in an attempt to identify potential vulnerabilities.

iii) Comparison to specification, which is the process of checking whether the
code does what the specifications, sources, and instructions provided to
SolidProof describe.

2. Testing and automated analysis that includes the following:

i) Test coverage analysis, which is the process of determining whether the test
cases are actually covering the code and how much code is exercised when
we run those test cases.

ii) Symbolic execution, which is analysing a program to determine what inputs
causes each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency,
effectiveness, clarify, maintainability, security, and control based on the established
industry and academic practices, recommendations, and research.

4. Specific, itemized, actionable recommendations to help you take steps to secure
your smart contracts.

Used Code from other Frameworks/Smart
Contracts (direct imports)

Imported packages:

v i@ interfaces
IERC20.sol
IERC20PermitUpgradeable.sol
IERC20Upgradeable.sol

IFlashLoanReceiver.sol

v @@ utils
AddressUpgradeable.sol
AmplificationUtils.sol
LPToken.sol
MathUtils.sol

Migrations.sol

ISwap.sol
ISwapFlashLoan.sol
v ([libraries

Address.sol

OwnableUpgradeable.sol

Router.sol

Clones.sol Swap.sol

ContextUpgradeable.sol SwapFlashLoan.sol
CountersUpgradeable.sol
ECDSAUpgradeable.sol
EIP712Upgradeable.sol
ERC20BurnableUpgradeable.sol
ERC20PermitUpgradeable.sol
ERC20Upgradeable.sol

OwnerPausableUpgradeable.sol

SwapUtils.sol

PausableUpgradeable.sol
ReentrancyGuardUpgradeable.sol
SafeERC20.sol

SafeMath.sol
SafeMathUpgradeable.sol

v (@ proxy

Initializable.sol

Tested Contract Files
This audit covered the following files listed below with a SHA-1 Hash.

A file with a different Hash has been modified, intentionally or otherwise,
after the security review. A different Hash could be (but not necessarily)
an indication of a changed condition or potential vulnerability that was
not within the scope of this review.

v1.0

File Name

contracts/SwapUtils.sol
contracts/interfaces/IERC20Upgradeable.sol
contracts/interfaces/IERC20PermitUpgradeable.sol
contracts/interfaces/ISwapFlashLoan.sol
contracts/interfaces/ISwap.sol
contracts/interfaces/IERC20.sol
contracts/interfaces/IFlashLoanReceiver.sol
contracts/helpers/GenericERC20.sol
contracts/helpers/FlashLoanBorrowerExample.sol
contracts/Swap.sol

contracts/Router.sol

contracts/LPToken.sol
contracts/utils/AddressUpgradeable.sol
contracts/libraries/ECDSAUpgradeable.sol
contracts/libraries/CountersUpgradeable.sol
contracts/libraries/SafeMathUpgradeable.sol
contracts/libraries/ERC20PermitUpgradeable.sol
contracts/libraries/ERC20BurnableUpgradeable.sol

contracts/libraries/ReentrancyGuardUpgradeable.sol

contracts/libraries/ContextUpgradeable.sol
contracts/libraries/PausableUpgradeable.sol
contracts/libraries/Address.sol
contracts/libraries/EIP712Upgradeable.sol
contracts/libraries/OwnerPausableUpgradeable.sol
contracts/libraries/SafeMath.sol
contracts/libraries/Clones.sol
contracts/libraries/SafeERC20.sol
contracts/libraries/ERC20Upgradeable.sol
contracts/OwnableUpgradeable.sol
contracts/MathUtils.sol
contracts/proxy/Initializable.sol
contracts/AmplificationUtils.sol

contracts/SwapFlashLoan.sol

SHA-1 Hash
c3cfed5e082d250cc6fal6911050c5200960933¢
b310903de7a32c0cd3631971a9113188ac411347
cc21709cb288cc8bb1c80c680bc3c11760fb1e15
1c27e6a929372be200a3acf4639d5¢7fd2ff819b
ccc0080c08d4cded28f12f16d9246f5bb8b86715
2d6eb8a102a8a92dcfef4dd19c977a062e891c7cf
bb153792ac1068f3d6897adafc3356156741dff5
77cbe7441448d8e8fca3f59e66396e71d002faf8
a3¢cb61710f0cc97fb5c05986cc6a03b97b2d982
eef3bccda300188ce74bcf39da99ff2fb35e1784
3a35eba91a0c60a89ch97746c98e7e18688518a6
73b92a6294622f963788e10e6e445d3fcb7{9e089
522674d9d63da6c735286f3a85f9bbd4d8c8af02
2209ef889686657878c1b6949717f30e4ef3050
3e7cee73ddboff685¢70832e271b823e62b7f60
c3fcf02887779f0de3ab4c368a5bd8c6196b1926
698875230444a1d6f5755c6bae5dc9abaf1d5817
340a37f7e751cb73639652a5¢0f01deca66357e5
4294648e9b18b56b640790229feedbf9c9817464
7¢c8676f62f5224a79b5f8d9cc0639a6914c27c42
bf27015d9bc6025dd9117e056d121a927cc97355
1aea000b5e51774d55f9dbeb58553f5d25caeb0b
9d010c203bc15504e902e7¢cc99937c2e74c94d93
2de27f6db029b91bc968f11c805436be9123dc38
252b3caeb72fadbde1cf723d04677a593bd82d36
2b50bb3d437111b4ec12fc68120f65c497795bf
2e2dfbf4f2ac98115ef92774ad58b6bcccc80d19
92455b72bde577f3dcd8870538fcb57ece55085e
cf71edffb7ed1d323f1969cb1edf00b76ch496ea
f644331c463b88117e279d2e6c64caaae25275db
b4ea9be81cf5755124ca4c530b62d35721708bdd
91bc6dcbacfe34931cd4e02d9ec1265d499abof
f7171b20368ae37ce4d3b4cibbe51a86ec9acb0d

Metrics

Source Lines

v1.0

I source comment [l single block M mixed

empty [todo blockEmpty
Risk Level
v1.0

1 overall average

perceivedComplexity
y 4
compilerVersion size
compilerFeatures numLogicContracts
inlineDocumentation numFiles

interfaceRisk

10

Capabilities

Components

Version Contracts Libraries Interfaces Abstract

1.0 7 11 6 9

Exposed Functions
This section lists functions that are explicitly declared public or payable.
Please note that getter methods for public stateVars are not included.

11

Version

1.0

Version

1.0

Public

123

External

98

State Variables

Version

1.0

Total

40

Capabilities

Version

1.0

Version

Solidity
Versions
observed

Transfer
s ETH

Low-
Level
Calls Il

Payable

0

Internal

218

Public

Experim
ental
Features

Deleg
ateCa

Private

Can
Receive
Funds

Uses
Hash

Function

S

Pure

40

Uses
Assembl

y

yes
(9 asm
blocks)

EC
Rec
ove

View

83

Has
Destroya
ble
Contract
s

New/
Create/
Create2

12

1.0 yes

Inheritance Graph
v1.0

yes

yes

yes

yes

— Asse
mblyCa
11l:Nam
e:crea
te

— Asse
mblyCa
1]l :Nam
e:crea
te2

13

CallGraph

v1.0

1919

9Q-0-p

00 1669-¢-019:69-¢

14

ootowoff

Scope of Work/Verify Claims

The above token Team provided us with the files that needs to be tested
(Github, Bscscan, Etherscan, files, etc.). The scope of the audit is the main
contract (usual the same name as team appended with .sol).

We will verify the following claims:
1. Overall checkup (Smart Contract Security)

15

Write functions of contract

v1.0

Swap/SwapFlashLoan
initialize
flashLoan
setFlashLoanFees
initialize
swap
addLiquidity
removeLiquidity
removeLiquidityOneToken
removeLiquiditylmbalance
withdrawAdminFees
setAdminFee
setSwapFee
rampA

stopRampA
pause

unpause
renounceOwnership

transferOwnership

Router

convert
addLiquidity
removeliquidity

removeBaseLiquidityOneToken

swapFromBase

swapTloBase

LPToken
initialize
mint
burn

burnFrom
transfer

approve

transferFrom

increaseAllowance

decreaseAllowance

16

Deployer cannot mint any new tokens

Name

Deployer cannot mint

Comments:
v1.0
LPToken
Owner can mint new tokens
GenericeERC20
Owner can mint new tokens

Exist Tested Status

17

Deployer cannot burn or lock user funds

Name

Deployer cannot lock

Deployer cannot burn

Comments:

v1.0
LPToken
Everybody can burn own tokens

Exist Tested Status

18

Deployer cannot pause the contract

Name

Deployer cannot pause

Exist Tested Status

19

Overall checkup (Smart Contract Security)

Tested Verified

Legend

Attribute Symbol

Verfified / Checked

Partly Verified

Unverified / Not checked

Not available

20

initialize

@ initializer
flashLoan

® nonReentrant

setFlashLoanFees

® onlyOwner

initialize

@ initializer
swap

@ nonReentrant

® whenNotPaused

@ deadlineCheck
addLiquidity

@ nonReentrant

® whenNotPaused

@ deadlineCheck
removeliquidity

® nonReentrant

@ deadlineCheck
removeliquidityOneToken

® nonReentrant

® whenNotPaused

@ deadlineCheck
removeliquiditylmbalance

@ nonReentrant

® whenNotPaused

@ deadlineCheck
withdrawAdminFees

@ onlyOwner
setAdminFee

@ onlyOwner
setSwapFee

® onlyOwner
rampA

® onlyOwner
stopRampA

@ onlyOwner

Modifiers and public functions
v1.0

pause
@ onlyOwner
unpause

@ onlyOwner

convert
addLiquidity

removeliquidity

removeBaseLiquidityOneToken

swapFromBase

swaploBase
initialize

@ initializer
mint

@ onlyOwner

permit

21

Please check if an OnlyOwner or similar restrictive modifier has been
forgotten.

22

Source Units in Scope

v1.0

Type File Logic Contracts Interfaces =~ Lines nLines nSLOC CommentLines Complex. Score Capabilities
e contracts/SwapUtils.sol 1 1063 965 585 265 483
OF contracts/interfaces/IERC20Upgradeable.sol 1 77 26 17 57 13
OF contracts/interfaces/IERC20PermitUpgradeable.sol 1 51 43 10 4 7
Q contracts/interfaces/ISwapFlashLoan.sol 1 14 8 4 1 5
“ contracts/interfaces/ISwap.sol 1 89 9 4 4 35
‘N contracts/interfaces/IERC20.sol 1 77 26 17 57 13
Q@ terfaces/IFlashLoanReceiver.sol 1 20 13 3 8 3
7 contracts/helpers/GenericERC20.sol 1 38 38 16 18 14
2 s/FlashlL owerl le.sol 1 66 55 40 8 62
2 contracts/Swap.sol 1 552 454 212 195 177
2 contracts/Router.sol 1 319 241 209 4 315 -
2 contracts/LPToken.sol 1 61 53 24 24 22
e contracts/utils/AddressUpgradeable.sol 1 165 149 67 100 42
€ contracts/libraries/ECDSAUpgradeable.sol 1 86 86 27 50 34 4
e ibraries/Cour sol 1 40 40 17 17 2
e AathUpg sol 1 214 214 61 139 16
® ies/ERC20PermitUpg sol 1 87 87 45 28 35 B
® ies/ERC20 p sol 1 51 51 22 22 24
® contracts/libraries/ReentrancyGuardUpgradeable.sol | 1 68 68 20 38 1
® ies/Contextl ble.sol 1 32 32 17 12 7
® ies/P. pg sol 1 97 97 35 50 23
€ contracts/libraries/Address.sol 1 189 169 78 13 47 L 1T}
® ies/EIP712Upgradeable.sol 1 121 121 46 66 30 -
® ies/OwnerP Jpgradeable.sol 1 37 37 19 13 17
€ contracts/libraries/SafeMath.sol 1 214 214 61 139 16
L3 contracts/libraries/Clones.sol 1 78 78 38 35 123
e contracts/libraries/SafeERC20.sol 1 75 74 33 32 25
2 ies/ERC20Upgradeable.sol 1 313 313 95 185 86
® O Upgr: sol 1 75 75 33 33 31
L =3 contracts/MathUtils.sol 1 39 39 14 20 3
® contracts/proxy/Initializable.sol 1 55 55 21 24 9
L3 contracts/AmplificationUtils.sol 1 160 148 90 44 46
7 contracts/SwapFlashLoan.sol 1 169 152 73 65 40
280 % Totals 27 6 4792 4230 2053 1907 1816
Legend
Attribute Description
Lines total lines of the source unit
ALines normalized lines of the source unit (e.g. normalizes functions

spanning multiple lines)

NnSLOC

normalized source lines of code (only source-code lines; no
comments, no blank lines)

Comment Lines

lines containing single or block comments

23

Complexity Score

a custom complexity score derived from code statements that
are known to introduce code complexity (branches, loops, calls,
external interfaces, ...)

24

Audit Results

Critical issues

High issues

Medium issues

Low issues

Issue File

Type

Line

Description

#1 Main

Contract doesn't
import npm packages
from source (like
OpenZeppelin etc))

We recommend to import all
packages from npm directly
without flatten the contract.
Functions could be modified

or can be susceptible to
vulnerabilities

#2

#3

H4

Files

LPToke

SwapFl
ashLoa
N

A floating pragma is set At the top

State variables
shadowing

Missing Events
Arithmetic

of source
file

166-167

26

The current pragma Solidity
directive is ,“>=0.6.0 <0.8.0

“un

- OwnableUpgradeable

- IERC20

- |[ERC20PermitUpgradeable

- IERC20Upgradeable

- ISwap

- Address

- Clones

- ContextUpgradeable

- CountersUpgradeable

- ECDSAUpgradeable

- EIP712Upgradeable

- ERC20BurnableUpgradeab
le

- ERC20PermitUpgradeable

- ERC20Upgradeable

- PausableUpgradeable

- ReentrancyGuardUpgrade
ble

- SafeERC20

- SafeMath

- SafeMathUpgradeable

- Initializable

- AddressUpgradeable

Rename the state variables
that shadow another
component

Emit an event for critical
parameter changes

26

#5 Files Layout ordering

Informational issues

Issue File Type

#1 Router | Unused return values

#2 SwapUti
Is

Misspelling

See
description

Line

96, 33, 43,
29,156, 159,
185, 212,

See
description

According to solidity
documentation, the correct
way to order is the following
way:

- types

- receive
- fallback
- external
- public
- Internal
- Private

Keep it in mind, that the view
and pure are grouping the
external etc.

Following files can be
reordered by this layout:

- SwapUtils
- Swap
- AmplificationUtils

Description

Ensure that all the return
values of the function calls
are used and handle both
success and failure cases if
needed by the business logic

Change following words:
- stableswap L205

Make sure to change it
everywhere else as well.

27

#3

H4

#5

Main

ERC20P
ermitUp
gradeab
le

SwapUti
Is

Router
Address

Upgrad
eable

NatSpec
documentation
missing

Unused parameter

Inconsistent coding
style in source files

41

Source files

If you started to comment
your code, also comment all
other functions, variables etc.

Some NatSpec format is
missing in following files:

- Address

- AddressUpgradeable
- ContextUpgradeable
- CounterUpgradeable
- EIP712Upgradeable
- SafeERC20

- Router

- Swap

Remove unused parameter.
Only just remove the variable
“name” and leave the rest

Some internal/private
functions are leading with
underscore and the others
not like the following:

- _calculateWithdrawOneTok
en L155

- calculateWithdrawOneTok
en L191

And so on.

If you are going to change
every internal function
leading with an underscore
make sure to change it
everywhere else too.

28

#6 SwapUti | Unclear variable names - Variables were set with
Is unclear names. This would
be problematically if your are
going to let other devs work
on the contract because the
unclear variables are not
understandable.

Examples:
- Xp

- getD

- getY

And so on.

Commented Code exist
There are some instances of code being commented out in the following
files that should be removed:

File Line Comment
Amplifica 73 // a0 + (al - a0) * (block.timestamp - t0O) / (t1 - tO)
tionUtils

79 // a0 - (a0 - al) * (block.timestamp - t0) / (t1 - t0)

Swap 177-178 /| swapStorage.initialATime = O;
/| swapStorage.futureATime = O;

SwapUtil 226-228 //ifi == tokenIndex, dxExpected = xp[i] * d1/dO - newY
s /] else dxExpected = xpli] - (xp[i] * d1/dO)
/] xpReduced|i] -= dxExpected * fee / FEE_DENOMINATOR

Recommendation
Remove the commented code, or address them properly.

Audit Comments

We recommend you to use the special form of comments (NatSpec
Format, Follow link for more information https://docs.soliditylang.org/en/
v0.5.10/natspec-format.html) for your contracts to provide rich
documentation for functions, return variables and more. This helps
investors to make clear what that variables, functions etc. do.

20. April 2022:

Read whole report for more information

29

https://docs.soliditylang.org/en/v0.5.10/natspec-format.html
https://docs.soliditylang.org/en/v0.5.10/natspec-format.html

SWC Attacks

ID

0
=

3

B &

‘m
=

I

‘m
=

s

n
=

O

HRE K]

‘m
=

6L

n
=

3

BRE R

Title

Unencrypted
Private Data
On-Chain

Code With No
Effects

Message call
with
hardcoded
gas amount

Hash
Collisions With
Multiple
Variable
Length
Arguments

Unexpected
Ether balance

Presence of
unused
variables

Right-To-Left-
Override
control
character
(U+202E)

Typographical
Error

DoS With
Block Gas
Limit

Relationships

CWE-767: Access to Critical
Private Variable via Public
Method

CWE-1164: Irrelevant Code

CWE-655: Improper
Initialization

CWE-294: Authentication
Bypass by Capture-replay

CWE-667: Improper Locking

CWE-1164: Irrelevant Code

CWE-451: User Interface (Ul)
Misrepresentation of Critical

Information

CWE-480: Use of Incorrect
Operator

CWE-400: Uncontrolled
Resource Consumption

Status

30

https://swcregistry.io/docs/SWC-136
https://cwe.mitre.org/data/definitions/767.html
https://swcregistry.io/docs/SWC-135
https://cwe.mitre.org/data/definitions/1164.html
https://swcregistry.io/docs/SWC-134
https://cwe.mitre.org/data/definitions/665.html
https://swcregistry.io/docs/SWC-133
https://cwe.mitre.org/data/definitions/294.html
https://swcregistry.io/docs/SWC-132
https://cwe.mitre.org/data/definitions/667.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-131
https://cwe.mitre.org/data/definitions/1164.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-130
http://cwe.mitre.org/data/definitions/451.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-129
https://cwe.mitre.org/data/definitions/480.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-128
https://cwe.mitre.org/data/definitions/400.html

‘m
=

N

=

s

‘m
=

R [2

0
=

O

RRE R

‘m
=

STe

‘m
=

oL

0 |ooQ‘m m‘(p‘m
‘E ‘:5 LS

N ‘(‘)
1

Arbitrary
Jump with
Function Type
Variable

Incorrect
Inheritance
Order

Write to
Arbitrary
Storage
Location

Requirement
Violation

Lack of Proper
Signature
Verification

Missing
Protection
against
Signature
Replay Attacks

Weak Sources
of
Randomness
from Chain
Attributes

Shadowing
State Variables

Incorrect
Constructor
Name

Signature
Malleability

CWE-695: Use of Low-Level
Functionality

CWE-696: Incorrect Behavior
Order

CWE-123: Write-what-where
Condition

CWE-573: Improper Following
of Specification by Caller

CWE-345: Insufficient
Verification of Data
Authenticity

CWE-347: Improper
Verification of Cryptographic

Signature

CWE-330: Use of Insufficiently
Random Values

CWE-710: Improper Adherence

to Coding Standards

CWE-665: Improper
Initialization

CWE-347: Improper
Verification of Cryptographic

Signature

31

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-127
https://cwe.mitre.org/data/definitions/695.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-125
https://cwe.mitre.org/data/definitions/696.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-124
https://cwe.mitre.org/data/definitions/123.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-123
https://cwe.mitre.org/data/definitions/573.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-122
https://cwe.mitre.org/data/definitions/345.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-121
https://cwe.mitre.org/data/definitions/347.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-120
https://cwe.mitre.org/data/definitions/330.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-119
http://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-118
http://cwe.mitre.org/data/definitions/665.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-117
https://cwe.mitre.org/data/definitions/347.html

[¥a] [ON'e) ‘U)
‘5 ‘: s

[€p ‘O
1

‘m
=

IS ‘Q

[¥a] N O ‘U)
‘5 ‘: s

N ‘O
1

=

I—‘O
a
—

wn o 10 |\
2 PLE

8 [2

=

& 2

‘m
=

RE

‘m
=

82

Timestamp
Dependence

Authorization
through
tx.origin

Transaction
Order
Dependence

DoS with
Failed Call

Delegatecall
to Untrusted
Callee

Use of
Deprecated
Solidity
Functions

Assert
Violation

Uninitialized
Storage
Pointer

State Variable
Default
Visibility

Reentrancy

Unprotected
SELFDESTRUC
T Instruction

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

CWE-477: Use of Obsolete
Function

CWE-362: Concurrent
Execution using Shared
Resource with Improper
Synchronization ('Race

Condition')

CWE-703: Improper Check or
Handling of Exceptional
Conditions

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

CWE-477: Use of Obsolete
Function

CWE-670: Always-Incorrect
Control Flow Implementation

CWE-824: Access of
Uninitialized Pointer

CWE-710: Improper Adherence
to Coding Standards

CWE-841: Improper
Enforcement of Behavioral
Workflow

CWE-284. Improper Access
Control

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-116
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-115
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-114
https://cwe.mitre.org/data/definitions/362.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-113
https://cwe.mitre.org/data/definitions/703.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-112
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-111
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-110
https://cwe.mitre.org/data/definitions/670.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-109
https://cwe.mitre.org/data/definitions/824.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-108
https://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-107
https://cwe.mitre.org/data/definitions/841.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-106
https://cwe.mitre.org/data/definitions/284.html

=

3

n
=

O

geE K|

‘m
=

B

=

El

‘m
=

|O |(')
O |4

Unprotected
Ether
Withdrawal

Unchecked
Call Return
Value

Floating
Pragma

Outdated
Compiler
Version

Integer
Overflow and
Underflow

Function
Default
Visibility

CWE-284. Improper Access
Control

CWE-252: Unchecked Return
Value

CWE-664: Improper Control of
a Resource Through its
Lifetime

CWE-937: Using Components
with Known Vulnerabilities

CWE-682: Incorrect
Calculation

CWE-710: Improper Adherence

to Coding Standards

33

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-105
https://cwe.mitre.org/data/definitions/284.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-104
https://cwe.mitre.org/data/definitions/252.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103
https://cwe.mitre.org/data/definitions/664.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-102
http://cwe.mitre.org/data/definitions/937.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-101
https://cwe.mitre.org/data/definitions/682.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-100
https://cwe.mitre.org/data/definitions/710.html

Blockchain Security | Smart Contract Audits | KYC

MADE IN GERMANY

	Disclaimer
	Description
	Project Engagement
	Logo
	Contract Link
	Methodology
	Used Code from other Frameworks/Smart Contracts (direct imports)
	Tested Contract Files
	Source Lines
	Risk Level
	Capabilities
	Inheritance Graph
	CallGraph
	Scope of Work/Verify Claims
	Modifiers and public functions
	Source Units in Scope
	Critical issues
	High issues
	Medium issues
	Low issues
	Informational issues
	Commented Code exist
	Audit Comments
	SWC Attacks

